
[WIP] Curriculum for the Imperative vs
Functional Programming Teaching Experiment

siiky

September 3, 2021

You can find this document in HTML, PDF, and the original Org.

1 Introduction
The functional paradigm has many advantages over other more common, popular,
and "traditional" paradigms, which are more popular to the detriment of the
programmers using them, the functional programmers forced to use them, and
the world at large, because the functional style is deemed to be complicated,
hard to learn, understand, use, and targeted only at academic researchers.

This document will outline the curriculum for an experiment with the end goal
of asserting whether the functional paradigm is indeed more difficult to learn,
use, or understand, when compared to the imperative/procedural paradigm.

The experiment is somewhat biased towards the functional approach, and after
the basic concepts that are common to all paradigms, those concepts that
don’t actually relate to programming itself, almost all concepts come from the
functional world. As such, the imperative style taught will not be idiomatic
imperative style, but bent to fit the functional style.

2 The Languages
Due to the purpose of the experiment, and the target learners, the languages
given as alternatives should satisfy these requisites:

• Should be high-level – no knowledge of the inner workings of a computer,
of memory, of memory management, etc, should be required to use it
effectively – C, C++, and similar are out of the question.

• No program structure required – requiring a program in its entirety to live
inside an artificial block is insane! – Java, C#, and similar are out of the
question.

1

./curriculum.html
./curriculum.org

• A REPL is a big plus! It facilitates and encourages experimentation with
the language.

A learner’s choice of languages must consist of at least one language of each of
the paradigms.

For the purpose of the experiment, Haskell will be required. As such, it will be
used and assumed throughout this text in examples, due to it being strongly
typed and so straightforward in this regard.

Here follow ideas/suggestions for possibly good language options.

2.1 Imperative
2.1.1 Python

Possibly the easiest of the listed imperative languages, used mostly in science.
Has lots of magic.

2.1.2 Lua

Very simple, small, and fast interpreted language, used a lot on game development
and as an embedded language. No magic whatsoever.

2.1.3 TODO Go?

The most difficult of the three, but also possibly the fastest, useful for concurrent
systems. No magic. The only language of all of the listed in this document with
no REPL.

2.1.4 TODO Pascal?

2.2 Functional
2.2.1 Haskell

A must due to its type system. Not much magic.

2.2.2 Scheme

Very simple general-purpose language with advanced meta programming, mainly
due to its straightforward syntax. No magic whatsoever.

2.2.3 Elixir

Powerful language that runs on the BEAM VM, suited for parallel systems,
with an actor model for its concurrency model. Brings lots of new features to
the Erlang table, including proper modules and modules hierarchy, a decent
polymorphic system, meta programming capabilities, and good tooling. Not
much magic.

2

3 Programming
First thing to know about Haskell is that it’s strongly typed, which means every
value has a type, and the compiler/interpreter enforces these types.

The syntax is similar to notation used in mathematics: an object x of type A
is written x : A; in Haskell it’s written x :: A. A function f that given an A
calculates a B is written f : A→ B; in Haskell it’s written f :: A -> B. And
so on. . .

In many cases Haskell can infer ("guess") the type of some value, so specifying
types is mostly optional. In these initial examples we will keep the types explicit,
but later we will ignore them, unless there’s good reason not to.

3.1 Basic types
The types that we will call basic are types provided by the base language. These
vary between languages, but there’s usually a set of basic types shared by most
programming languages. Here we will cover the most common types that are
available to all the languages discussed above.

3.1.1 Atomics

These are so called atomics because they cannot usally be decomposed in smaller
parts. With these alone it’s already possible to get a lot out of any programming
language.

1. Numbers

Nothing to explain here, other than that in computer programming lan-
guages it’s common for integer numbers to be a distinct type from the
non-integer numbers – such as rationals, reals, and complex.

In truth, a computer cannot represent real numbers, only approximations.
The details aren’t important – just keep in mind that when doing number
calculations with reals on a computer, if you get unexpected results, it’s
very likely for this to be the cause.

The reasons to call non-integer numbers reals are that a computer may
still be useful to do calculations on (approximate) reals, and that most
programming languages don’t have exact rational numbers – they just fake
it.

(a) Integers

Just what one would expect – some examples:

0 :: Int
-1 :: Int
21 :: Int
42 :: Int

3

Some languages provide unsigned integer types, i.e., the naturals
(including 0), non-negative integers.

(b) Reals

Mostly what one would expect as well:

0 :: Float
1 :: Float
3.14 :: Float
-6.28 :: Float
1.4142135 :: Float

Notation similar to the scientific notation is also common on many
languages, but the exact notation differs between languages. We won’t
be using it in this document, so we won’t detail it here. However, they
usually go something like this: 0.1234e5 is the same as 0.1234 ∗ 105.
Check the official documentation of each language for the exact
supported notations.

2. Booleans

Used for logic – True and False. The exact words or symbols used in each
language varies, but these are common enough to be good guesses.

3. Chars?

Characters are values that may represent a letter, a number, a symbol, etc,
such as: 'a', '3', '!', etc. Exact details vary wildly between languages
too, so check the language’s official documentation.

The most common notation is the one used above – surrounding the
character with a single quote (').

3.1.2 Sequences

These types are collections of other types, atomic or not, with an order, and
they may be empty.

1. Strings

These are sequences of characters. Examples of strings are "hello", "0 +
1 = 2", "".

Although other notations exist, the most common of all is surrounding the
characters of the string with double quotes ("), like in the examples above.

This poses a problem, because by using double quotes to denote a string,
makes it impossible to use double quotes themselves inside the string. To
fix this, languages allow programmers to escape certain specific characters
inside a string, by placing a single backslash (\) right before the character
that’s to be escaped – like this, a string with a single character, the

4

double quote itself: "\""; or this: "And then they said: \"are you
gonna escape or not?\"".

In Haskell, strings are actually just lists of characters, so the following
section also applies to strings.

2. Lists/Arrays

These, in a way, can be thought of as a generalization of strings, but for
elements other than characters. If a string is a list or array of characters,
or something else entirely, depends on the language. However, such details
aren’t usually matter for concern.

Again, notation varies wildly between languages, but the most common
among the languages discussed previously (about half of them) is surround-
ing the elements with square brackets ([]), and separating the elements
with commas (,).

Some examples follow:

[] :: [Int]
[] :: [Float]
[] :: [Char]
"" :: [Char]
[1, 2, -4] :: [Int]
[1, 2, -4] :: [Float]
['h', 'e', 'l', 'l', 'o'] :: [Char]
['h', 'e', 'l', 'l', 'o'] :: String
[3.14, -6.28, 1.4142135] :: [Float]
["hello", "there"] :: [[Char]]
["hello", "there"] :: [String]

Try to understand these type annotations; it will be useful later on.

3. TODO Tuples?

3.2 Basic operations on basic types
Now that you know how to create, define, write, read, and understand the basic
types, you’re ready to get your hands dirty and do something with them.

3.2.1 Atomics

1. Numbers

(a) Arithmetic

Possibly the thing numbers are most useful for. All (almost) of the
arithmetic operations you’re already familiar with from mathematics
are available, and most basic with familiar names too: +, *, -, /.
Precedence is also the most common in mathematics: * and / take

5

precedence over + and -; but otherwise, operations are applied from
left to right. Nonetheless, it’s possible to force operation precedence
and clarify ambiguities with parentheses (()).

Examples of numbers

1 + 1 :: Int
21 * 2 :: Int
66 / 3 :: Float -- Int doesn't work; why?
2 * 2 - 3 :: Int
2 * (2 - 3) :: Int
(2 * 2) - 3 :: Int

All of the examples above work as well if you specify Float as their
type. lst. ??

2. Booleans

(a) Logic

The most basic logical operators from mathematics are also available:
not (¬, not), and (∧, &&), or (∨, ||). The order of precedence, from
the most precedent to the least one is not, &&, ||.

True || False :: Bool
not False :: Bool
True && True :: Bool

A note on implementation details: computers are at essence sequential
machines, and therefore cannot compute the value of two expressions
simultaneously (a bit of a stretch here). And most programming
languages evaluate arithmetic and logical expressions from left to
right. Because of this, and for performance reasons, apart from not
which is unary, logical operators are short circuiting – this is just a
fancy way of saying that it’ll try to do the least amount of work to
get to the resulting value. This short circuiting is possible in these
two cases:

• False && B, which evaluates to False
• True || B, which evaluates to True

It may sound like a small detail, but it’s actually an important one.
And depending on the language, the operands’ order may actually
change the program’s behavior!

3.2.2 Sequences

1. Indexing

In Haskell, to index a list (consequently strings too) you use the !! function
– indexes start at 0:

6

[0, 1, 2, 3] !! 2 :: Int
"hello" !! 4 :: Char
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] !! 1 !! 1 :: Int

2. Destructuring

Lists are defined as either being empty ([]), or having a head and a tail,
where the head is an element of the list, and the tail is the rest of the list.
So, in order to destruct (i.e., separate) a list in its components, you use
the creatively named functions head and tail:

head [0, 1, 2, 3] :: Int
tail [0, 1, 2, 3] :: [Int]
head "hello" :: Char
tail "hello" :: String -- [Char]
head (tail [0, 1, 2, 3]) :: Int
tail (tail [0, 1, 2, 3]) :: [Int]

Given that we can destruct a list into both its components, we should also
be able to construct a list given its components – and that’s what we’ll
learn now. You can construct a list with its so-called constructors. As
mentioned above, a list can be the empty list, or a head and a tail put
together. So we need a way to create an empty list, and a way to create a
list from its head and its tail.

The empty list is easy, because it is itself – [] is the empty list, there’s no
need to complicate.

And to put a head and a tail together to form a new list you can use the
cons operator (:).

[] :: String
(:) 1 [] :: [Int]
1:[] :: [Int]
1:(2:(3:[])) :: [Int]
1:2:3:[] :: [Int]
[]:[] :: [[String]]

What you saw above with (:) is an important Haskell convention to
keep in mind. A function (or operator) that’s defined/called as (fun)
(notice the parentheses) is an infix operator, i.e., it’s placed in between
the operands when used; while usually, for example with head and tail,
functions are prefix, i.e., they’re placed before the operands when used.
The most common examples of infix operators are the arithmetic operators
((+), (/), etc). To turn an infix operator into a prefix operator, all you
have to do is surround the operator with parentheses. So, (+) 1 2 is the
same as 1 + 2.

There’s also a convention to turn prefix operators into infix operators,
which is to surround the operator with backticks (`) – we don’t have an

7

example yet, but it goes like this: op arg1 arg2 is equivalent to arg1
`op` arg2. Later on we’ll get to see examples of this.

3. Concatenation

The operation that takes two sequences of the same type and "glues" them
together is called concatenation.

[0, 1] ++ [2, 3] :: [Int]
(++) [0, 1] [2, 3] :: [Int]
"hello" ++ " " ++ "world" :: String

4. TODO Interpolation?

3.2.3 Order – comparison, equality, etc

Something else that’s common in mathematics is comparing or equating things.
For example, we can say that 2 < 3, that 2 + 2 = 4, that 3 · 3 > 3, that 1 + 1 6= 1,
etc. When programming, being able to compare and equate things is also very
useful. Table 1 has the correspondence between the comparison in mathematical
notation and Haskell.

Table 1: Comparison operators

Mathematics Haskell
< <
> >
≤ <=
≥ >=
= ==
6= /=

The reason to use == instead of = for equality will be clear next.

3.3 (Pure) Numerical Functions – Sn -> Sm

Let’s start now defining our own functions. A very high-level and hand-wavy
way to explain is: you translate f(x) = expr into Haskell as f x = expr.
So, for example, to define the identity function, identity(x) = x, in Haskell,
you write identity x = x. For multivariable functions, you just need to add
the parentheses in Haskell: f(x, y) = x · y translates to f (x, y) = x * y;
f(x, y) = (y, x) translates to f (x, y) = (y, x); f(x) = (x, x) translates to f
x = (x, x); etc.

8

3.3.1 Doubles

Define a function in Haskell that given an Int doubles it lst. ??, the equivalent
of f(x) = x · x.

How would you define a function that given a Float doubles it lst. ???

3.3.2 Squares

Define a function in Haskell that given an Int squares it lst. ??.

How would you define a function that given a Float squares it lst. ???

3.3.3 etc

3.3.4 Function composition

Like in mathematics (calculus), it’s possible to compose functions to define a
new function. The notation is similar, and so are the semantics: (f ◦ g)(x) is
the same as f(g(x)). And in Haskell:

-- What if we want Float?
double_square :: Int -> Int
-- double_square x = double (square x)
double_square = double . square

As subtly implied at the beginning of this section, in the case of multivariable
functions, composition also just works, as long as the types match.

h x = (x, x + 1)
g (x, y) = (x * 3, y * 2, x + y)
f (x, y, z) = x * y + z
k = f . g . h

-- Define k by expanding the definitions of f, g, and h;
-- i.e., define k with a single expression.
k' = undefined

-- What happens if you change this expression to another
-- type of number?
k 10 :: Int

3.4 (Pure) Logical Functions
Before (Pure) Predicates on Numbers for background.

This is going to be a packed section, with several important bits. Let’s start
with flow control.

9

3.4.1 Flow Control

It sometimes may happen that we need or want a function to do different things
depending on some condition. Imagine we’re defining the absolute function, i.e.,
the function that given a (signed) number always returns a positive number,
that is the input number itself, or its symmetric:

abs(x) =
{
−x if x < 0
x otherwise

In Haskell, the most basic statement we have for this is the if then else. We
could translate the function above to this:

abs x = if x < 0
then -x
else x

-- Note that the line breaks aren't necessary; this is also OK:
abs x = if x < 0 then -x else x

This is already enough to get everything needing flow control done. However,
with more clauses it quickly grows in size:

f (x, y, z) = if cond1
then expr1
else if cond2

then expr2
else if cond3

then expr3
else if cond4

then expr4
else expr5

This is hard to type, and when the expressions span several lines it gets hard to
read and understand the code. To remediate this problem, we have guards:

f (x, y, z) -- Notice that there's no equal sign here!
| cond1 = expr1
| cond2 = expr2
| cond3 = expr3
| cond4 = expr4
| otherwise = expr5

The conditions are evaluated one by one, in the order defined; if a condition
evaluates to true, then the corresponding expression is evaluated and its result
is returned as the function’s result; otherwise the next condition is tried. This
exactly like the if then else expressions above. Because of that, you should
consider the order of the conditions when using guards.

10

The otherwise clause isn’t necessary, but if all the different conditions don’t
correspond to all the possible "states", that is, if it’s possible for all of the
conditions to be false, then the program will crash if there’s no otherwise
clause.

Next we’ll learn about a major Haskell feature, available on many functional
programming languages, but not as much in imperative languages.

3.4.2 Pattern Matching and Function Clauses

Pattern matching allows us to match values according to patterns. For example,
if we were to define arithmetic operators, we should probably add one or more
clauses to take care of 0 or 1, because they’re usually "special".

mul(x, y) =

0 if x = 0
0 if y = 0
y if x = 1
x if y = 1
The common case... otherwise

We can already define an equivalent function in Haskell using either if then
else or guards:

mul (x, y)
| x == 0 = 0
| y == 0 = 0
| x == 1 = y
| y == 1 = x
-- `undefined` can be used to "make holes" when we don't
-- know how to, or don't want to define some expression.
| otherwise = undefined

And you might be able to guess that pattern matching (together with several
function clauses) can be used to define this function even more succinctly:

mul (x, y) = case (x, y) of
(0, y) -> 0
(x, 0) -> 0
(1, y) -> y
(x, 1) -> x
(x, y) -> undefined

A function clause is analogous to a guard clause – each one will be tried in order,
and the first one to "work" is chosen. Each of the clauses consists of a pattern,
and when the function is called, the arguments are matched with the pattern. If
they do match, then the corresponding expression is evaluated, and its result
is returned as the function’s result. Otherwise, the next pattern is tried. Also

11

similarly to guards, if the arguments don’t match any of the patterns, then an
error is thrown.

One last tip on pattern matching: if you don’t care about a particular value, you
can give it the pattern _, which will match anything, but won’t be given a name.
Thus, the first two clauses of the mul function could be rewritten like this:

mul (x, y) = case (x, y) of
(0, _) -> 0
(_, 0) -> 0

Pattern matching isn’t limited to numbers, however – you can pattern match on
values of any type. And that’s what you’ll practice next.

Just one more thing before we move forward. Another Haskell syntax we can use
is function clauses. The "full" definition of mul above can be rewritten like this:

mul (0, _) = 0
mul (_, 0) = 0
mul (1, y) = y
mul (x, 1) = x
mul (x, y) = undefined

There’s usually no good reason to use one over the other, as they are equivalent.
This latter definition is more idiomatic, but if you prefer using case, then case
is the way to go!

3.4.3 NOT

myNot :: Bool -> Bool
myNot True = False
myNot False = True

3.4.4 AND

myAnd :: (Bool, Bool) -> Bool
myAnd (True, True) = True
myAnd (_, _) = False

3.4.5 OR

myOr :: (Bool, Bool) -> Bool
myOr (False, False) = False
myOr (_, _) = True

3.4.6 XOR

myXor :: (Bool, Bool) -> Bool
myXor (True, False) = True

12

myXor (False, True) = True
myXor (_, _) = False

3.4.7 Haskell Boolean Operators

Haskell already has most of these operations defined. Here’s the table:

Math Haskell
∧ &&
∨ ||
¬ not

Define the following boolean function, first using the my* functions defined above,
and then using the standard Haskell boolean operators:

h : (Bool ×Bool ×Bool)→ (Bool ×Bool)

h(a, b, c) = ((a ∧ b)⊕ c, a ∨ b ∨ c)

h :: (Bool, Bool, Bool) -> (Bool, Bool)
h (a, b, c) = (myXor (myAnd (a, b)) c, myOr a (myOr b c))
h (a, b, c) = (myXor (a && b) c, a || b || c)

3.5 (Pure) Predicates on Numbers
3.5.1 Is even/odd? – in terms of division

The functions div, mod, and divMod may be useful.

-- All of the following definitions are valid.
isEven :: Int -> Bool

isEven n = (a `mod` 2) == 0

isEven n = (a `mod` 2) /= 1

isEven n = case a `mod` 2 of
0 -> True
1 -> False

isEven n = not isOdd n

isEven = not . isOdd

-- All of the following definitions are valid.
isOdd :: Int -> Bool

13

isOdd n = (a `mod` 2) == 1

isOdd n = (a `mod` 2) /= 0

isOdd n = case a `mod` 2 of
0 -> False
1 -> True

isOdd n = not isEven n

isOdd = not . isEven

The only pair of definitions that wouldn’t work is that of the mutually recursive
definitions, that is, the one where each function calls the other. More details
about recursive functions will come next.

3.5.2 Is multiple? – in terms of division

The functions div, mod, and divMod may be useful.

isMultiple :: Int -> Int -> Bool
isMultiple a b = (a `mod` b) == 0

isMultiple a b = case a `mod` b of
0 -> True
_ -> False

3.5.3 etc

3.6 (Pure) Predicates on Chars?
3.6.1 Is digit?

isDigit '0' = True
isDigit '1' = True
isDigit '2' = True
isDigit '3' = True
isDigit '4' = True
isDigit '5' = True
isDigit '6' = True
isDigit '7' = True
isDigit '8' = True
isDigit '9' = True
isDigit _ = False

14

3.6.2 Is whitespace?

isWhitespace ' ' = True
isWhitespace '\t' = True
isWhitespace '\v' = True
isWhitespace _ = False

3.6.3 Is symbol?

3.6.4 Is alpha?

3.6.5 etc

3.7 (Pure) Recursive Functions on Numbers
In short, recursive functions are functions that, directly or indirectly, call them-
selves. A popular one is that of the Fibonacci number:

fib : N0 → N

fib(n) =
{

1 if n < 2
fib(n− 1) + fib(n− 2) otherwise

3.7.1 Fibonacci – the mathematical definition (recursive process)

The definition above translates to:

fib :: Int -> Int
fib n

| n < 2 = 1
| otherwise = fib (n-1) + fib (n-2)

3.7.2 Is even/odd?

Here we’re going to define isEven and isOdd in a mutually recursive manner,
but neither will use the mod function. Instead, we’ll say that a number n is even
if it 0, or if n− 1 is odd. Likewise, we’ll say that a number n is odd if it is not 0,
or if n− 1 is even.

isEven :: Int -> Bool
isEven 0 = True
isEven n = isOdd (n-1)

isOdd :: Int -> Bool
isOdd 0 = False
isOdd n = isEven (n-1)

15

3.7.3 Is multiple?

isMultiple :: Int -> Int -> Bool
isMultiple a b

| a == b = True
| a > b = isMultiple (a - b) b
| a < b = False

3.7.4 Sum, product, . . . – recursive process

Given two numbers a and b such that a < b, we’ll define the following expressions:∑b
i=a i and

∏b
i=a i.

-- What happens if a > b?
sum a b

| a == b = a
| a < b = a + sum (a + 1) b

-- What happens if a > b?
prod a b

| a == b = a
| a < b = a * prod (a + 1) b

3.7.5 Sum, product, . . . – iterative process

Because of how the computers work, the definitions of sum and prod above
are very inefficient, and may even not work for a large enough b − a. That is
because the definitions above evolve into a recursive process; while computers
are iterative machines. To explain it better, let’s look at an example sum call,
and manually evaluate it.

sum 0 4
==
0 + sum 1 4
==
0 + (1 + sum 2 4)
==
0 + (1 + (2 + sum 3 4))
==
0 + (1 + (2 + (3 + sum 4 4)))
==
0 + (1 + (2 + (3 + 4)))
==
0 + (1 + (2 + 7))
==
0 + (1 + 9)
==
0 + 10

16

==
10

It’s possible to do better, however. Let’s look at the iterative definition, and
then see the difference between the two by also manually evaluating it.

sum :: Int -> Int -> Int
sum a b = sumAux 0 a b

sum :: Int -> Int -> Int -> Int
sumAux ret a b

| a == b = ret + a
| a < b = sumAux (ret + a) (a + 1) b

Here’s the manual evaluation of sum 0 4, according to this new definition:

sum 0 4
==
sumAux 0 0 4
==
sumAux (0 + 0) 1 4
==
sumAux 0 1 4
==
sumAux (0 + 1) 2 4
==
sumAux 1 2 4
==
sumAux (1 + 2) 3 4
==
sumAux 3 3 4
==
sumAux (3 + 3) 4 4
==
sumAux 6 4 4
==
6 + 4
==
10

Notice that this function results in roughly the same number of steps, but it
doesn’t grow "to the right", in a triangle, as with the other definition. That is the
big difference. If b− a = n, then the first definition would grow into a triangle
of height n + 1, that is, it would evolve eventually into a bunch of "pending"
operations. With the second definition, the number of "pending" operations can
be considered constant.

This new definition has a couple more steps, but that can be improved, for
example like this:

17

sum :: Int -> Int -> Int
sum a b

| a == b = a
| a < b = sumAux a (a + 1) b

sumAux :: Int -> Int -> Int -> Int
sumAux ret a b

| a == b = ret + a
| a < b = sumAux (ret + a) (a + 1) b

Exercise: show that the two definitions are equivalent.

3.7.6 Fibonacci – iterative process

A similar iterative "conversion" can be applied to the Fibonacci function. It isn’t
as obvious, but here’s the definition:

fib n = fibAux 1 1 n

-- n1 corresponds to fib(n-1); and n2 correspends to fib(n-2)
fibAux n2 _ 0 = n2
fibAux n2 n1 s = fibAux n1 (n1 + n2) (s - 1)

To try and explain by visualizing it, let’s make a diagram. The parentheses
surround n2 and n1 (i.e., fib(n− 2) and fib(n− 1)).

fib(n=2) = 2
(1 1) 2 3 5 8 13

fib(n=3) = 3
1 (1 2) 3 5 8 13

fib(n=4) = 5
1 1 (2 3) 5 8 13

fib(n=5) = 8
1 1 2 (3 5) 8 13

fib(n=6) = 13
1 1 2 3 (5 8) 13

Exercise: manually evaluate fib(n), according to the first mathematical definition
and this new definition, for a small n (n < 5).

18

3.7.7 etc

3.8 (Pure) Functions on Sequences
3.8.1 Is empty?

empty :: [a] -> Bool
empty [] = True
empty _ = False

3.8.2 Has member?

member :: Eq a => a -> [a] -> Bool
member _ [] = False
member x (y:ys) = (x == y) || member x ys

3.8.3 Length – recursive and iterative processes

length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

This definition evolves into a recursive process, as we’ve seen before, but it’s
possible to turn it into one that evolves into an iterative process.

3.8.4 Reverse – recursive and iterative processes

reverse [] = []
reverse (h:t) = reverse t ++ [h]

This definition too, evolves into a recursive process, but there’s a better one
evolving into an iterative process.

3.8.5 etc

3.9 (Pure) Functions over Sequences (Explicit Recursion)
Compare different definitions with recursive and iterative processes.

3.9.1 Double, add 1, . . .

double [] = []
double (h:t) = (2 * h):(double t)

add1 [] = []
add1 (h:t) = (h + 1):(add1 t)

Notice that the two functions are essentially the same:

func [] = []
func (h:t) = (f h):(func t) -- for some given f

19

For double, f would be (*2); and for add1, (+1).

3.9.2 sum, product, . . .

sum :: [Int] -> Int
sum [] = 0
sum (h:t) = h + sum t

product :: [Int] -> Int
product [] = 1
product (h:t) = h * product t

Notice that here too, the two functions are essentially the same:

func [] = ret -- for some given ret
func (h:t) = h `f` func t -- for some given f

For sum, ret would be 0, and f would be (+); and for product, ret would be 1,
and f would be (*).

3.10 (Pure) Functions over Sequences (Higher-order Func-
tions)

We saw in the previous chapter that some computations we want to compute
are very similar. In this chapter we’ll see that they can indeed be abstracted,
that is, be made more general.

3.10.1 map – double, add 1, triple, . . .

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (h:t) = (f h):(map f t)

double = map (*2)

add1 = map (+1)

triple = map (*3)

3.10.2 fold – length, reverse, has member?, . . .

3.10.3 sum, product

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ ret [] = ret
foldr f ret (h:t) = f h (foldr ret f t)

sum = foldr (+) 0

20

product = foldr (*) 1

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl _ ret [] = ret
foldl f ret (h:t) = foldl f (f ret h) t

sum = foldl (+) 0

product = foldl (*) 1

3.10.4 map in terms of fold

On top of these, map can also be written as a fold?.

map f = foldr (\x ret -> (f x) : ret) []
map f = foldl (\ret x -> (f x) : ret) []

How do these two definitions differ from each other? How do the definitions
for sum and product using foldr and foldl differ from each other? How does
foldr differ from foldl? Is one better than the other? Should one be preferred
over the other?

4 Exercise Solutions
Doubles a given integer.

double :: Int -> Int
double x = 2 * x

Doubles a given float.

double :: Float -> Float
double x = 2 * x

Squares a given integer.

square x = x * x

Squares a given float.

square x = x * x

21

	Introduction
	The Languages
	Imperative
	Python
	Lua
	TODO Go?
	TODO Pascal?

	Functional
	Haskell
	Scheme
	Elixir

	Programming
	Basic types
	Atomics
	Sequences

	Basic operations on basic types
	Atomics
	Sequences
	Order – comparison, equality, etc

	(Pure) Numerical Functions – Sn -> Sm
	Doubles
	Squares
	etc
	Function composition

	(Pure) Logical Functions
	Flow Control
	Pattern Matching and Function Clauses
	NOT
	AND
	OR
	XOR
	Haskell Boolean Operators

	(Pure) Predicates on Numbers
	Is even/odd? – in terms of division
	Is multiple? – in terms of division
	etc

	(Pure) Predicates on Chars?
	Is digit?
	Is whitespace?
	Is symbol?
	Is alpha?
	etc

	(Pure) Recursive Functions on Numbers
	Fibonacci – the mathematical definition (recursive process)
	Is even/odd?
	Is multiple?
	Sum, product, … – recursive process
	Sum, product, … – iterative process
	Fibonacci – iterative process
	etc

	(Pure) Functions on Sequences
	Is empty?
	Has member?
	Length – recursive and iterative processes
	Reverse – recursive and iterative processes
	etc

	(Pure) Functions over Sequences (Explicit Recursion)
	Double, add 1, …
	sum, product, …

	(Pure) Functions over Sequences (Higher-order Functions)
	map – double, add 1, triple, …
	fold – length, reverse, has member?, …
	sum, product
	map in terms of fold

	Exercise Solutions

